If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 21y2 + -6y + 2 = 0 Reorder the terms: 2 + -6y + 21y2 = 0 Solving 2 + -6y + 21y2 = 0 Solving for variable 'y'. Begin completing the square. Divide all terms by 21 the coefficient of the squared term: Divide each side by '21'. 0.09523809524 + -0.2857142857y + y2 = 0 Move the constant term to the right: Add '-0.09523809524' to each side of the equation. 0.09523809524 + -0.2857142857y + -0.09523809524 + y2 = 0 + -0.09523809524 Reorder the terms: 0.09523809524 + -0.09523809524 + -0.2857142857y + y2 = 0 + -0.09523809524 Combine like terms: 0.09523809524 + -0.09523809524 = 0.00000000000 0.00000000000 + -0.2857142857y + y2 = 0 + -0.09523809524 -0.2857142857y + y2 = 0 + -0.09523809524 Combine like terms: 0 + -0.09523809524 = -0.09523809524 -0.2857142857y + y2 = -0.09523809524 The y term is -0.2857142857y. Take half its coefficient (-0.1428571429). Square it (0.02040816328) and add it to both sides. Add '0.02040816328' to each side of the equation. -0.2857142857y + 0.02040816328 + y2 = -0.09523809524 + 0.02040816328 Reorder the terms: 0.02040816328 + -0.2857142857y + y2 = -0.09523809524 + 0.02040816328 Combine like terms: -0.09523809524 + 0.02040816328 = -0.07482993196 0.02040816328 + -0.2857142857y + y2 = -0.07482993196 Factor a perfect square on the left side: (y + -0.1428571429)(y + -0.1428571429) = -0.07482993196 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 2x^7-4x^5= | | 0=x^2+5x-183 | | c^2+4cf-45f^2= | | 9a-a= | | 17/14=m/16 | | x^2+y^2=121 | | 42x+18-19=-28 | | 3+3d-5d+1=12 | | 24x-(4x+4)=11 | | 2(n-7)=-22+3n | | 5w-6=-2+w | | -x^3+36x+4=0 | | 2x-14=3(2x-18) | | 8+6z-6=9z+30-7z | | 3(x-2)=-2(x+13) | | 5(1-x)=15 | | 19-x-x=-13 | | Y=-2x^2+5x+5 | | x^3-13x^2+40x= | | x^3-3xC-2n=0 | | 7x^2-.5x=0 | | x^3-3xn^2-2n=0 | | 15/3(8-5)= | | m^3-3mn^2-2n=0 | | n/6+6=23 | | 9x+2=3x-10 | | 15+2B=3B | | 4x+8+7=3 | | P^2+2p+4= | | 5(x-2)=-20 | | 4z+4z-22=9z-z+43 | | 6a+11=2a |